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Abstract

A lot of recent work in Language & Vision
has looked at generating descriptions or re-
ferring expressions for objects in scenes of
real-world images, though focusing mostly on
relatively simple language like object names,
color and location attributes (e.g., brown chair
on the left). This paper presents work on
Draw-and-Tell, a dataset of detailed descrip-
tions for common objects in images where an-
notators have produced fine-grained attribute-
centric expressions distinguishing a target ob-
ject from a range of similar objects. Addi-
tionally, the dataset comes with hand-drawn
sketches for each object. As Draw-and-Tell
is medium-sized and contains a rich vocab-
ulary, it constitutes an interesting challenge
for CNN-LSTM architectures used in state-of-
the-art image captioning models. We explore
whether the additional modality given through
sketches can help such a model to learn to ac-
curately ground detailed language referring ex-
pressions to object shapes. Our results are en-
couraging.

1 Introduction

Recent work in referring expression generation
(REG) has focused more and more on large-scale
image datasets (Kazemzadeh et al., 2014; Mao
et al., 2016; Yu et al., 2016) and models that in-
corporate a state-of-the-art vision component (Mao
et al., 2016; Yu et al., 2017; Zarrieß and Schlangen,
2018). As compared to traditional REG settings
(Dale and Reiter, 1995; Krahmer and Van Deemter,
2012), these works have led to substantial advances
in terms of the complexity of visual inputs that can
be processed and the visual object categories that
can be covered. At the same time, it is questionable
whether these recent benchmarks for real-world
REG constitute an equally big step forward in terms
of the language that needs to be modeled. As noted
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Figure 1: (a) Photo of a starfish; (b) Sketch of the
starfish in (a). Starfish attribute description: Top view,
legs bend, thin legs, on sand.

by Achlioptas et al. (2019), the vocabulary and at-
tributes learnt by state-of-the-art REG models is
linguistically and lexically relatively constrained,
and does not cover language that can be used to de-
scribe fine-grained differences between object parts
and shapes (see Section 2) . Thus, Achlioptas et al.
(2019) propose to go back to carefully designed
datasets with graphical, abstract objects in order to
elicit complex descriptions of object attributes and
also to have access to more fine-grained represen-
tations of an object’s geometry and topology.

We explore modeling of fine-grained attribute de-
scriptions of objects in real-world images, based on
the Draw-and-Tell dataset introduced by Han and
Schlangen (2017). This dataset was collected in a
controlled procedure akin to traditional REG set-
ups, resulting in fine-grained attribute descriptions
and a rich vocabulary, see Figure 1 for an example.
As the Draw-and-Tell data was originally designed
for sketch-based image retrieval (Eitz et al., 2012;
Sangkloy et al., 2016), each image is paired with
hand-drawn sketches depicting the object in it. As
illustrated in Figure 1(b), these sketches are some-
what distorted and abstract away from many visual
properties of the complex real-world objects (e.g.
colour). Yet they provide a clear outline of the ob-
ject’s shape. In this paper, we explore whether this



form of visual abstraction is useful for modeling
and generating fine-grained attribute descriptions
of objects. We investigate whether object sketches
lead to improvements in neural generation of de-
scriptions of real-world objects, especially for at-
tributes related to shape and orientation.

In the following, we present our ongoing work
on generating detailed attribute descriptions of
object by grounding in images and hand-drawn
sketches. We first introduce the Draw-and-Tell
dataset (Section 3), then describe a basic recurrent
neural network architecture for generating attribu-
tion descriptions (Section 4). We carry out an au-
tomatic evaluation based on measures like BLEU
(Papineni et al., 2002), vocabulary size, and the av-
erage length of generated descriptions. In addition,
we provide a qualitative analysis and discussion on
how incorporating sketches can benefit the task of
generating fine-grained attribute descriptions.

2 Related Work

Visual language grounding and REG Founda-
tional work in REG has often followed the well-
known attribute selection paradigm established by
(Dale and Reiter, 1995). Here, visual scenes have
usually been carefully created and controlled so
that the target and distractor referents and distrac-
tors would have similarities in their set of anno-
tated attributes (e.g. type, position, size, color and
so on), see Krahmer and Van Deemter (2012). In
recently used image benchmarks for REG, the vi-
sual scene is typically given through a real-world
image (Kazemzadeh et al., 2014; Yu et al., 2016),
which makes it very difficult to systematically con-
trol the underlying attributes of a target referent
and to what extent it resembles its distractors in the
scene. At the same time, Yu et al. (2016) found that,
in the standard version of the RefCOCO bench-
mark, many participants simply used location at-
tributes like left, right relying on the 2D layout of
the scene. As a remedy, they propose to introduce
“taboo words” into the reference task in order to
elicit “appearance-based” attributes. Achlioptas
et al. (2019) adopt a different approach and suggest
to collect data based on more abstract objects. They
collect a dataset of referring expressions to chairs
where various properties and parts of targets and
distractors are controlled in terms of their visual
similarity. Our work combines ideas from both
paradigms: we use real-world images of objects
paired with hand-drawn sketches, which allows us

to integrate realistic and abstract visual inputs.

Multimodal Embedding Space For being able
to model REG with multiple input modalities (im-
ages and sketches), we need to be able to repre-
sent these inputs as visual embeddings or features
transferred from a CNN. Here, we rely on previ-
ous work that has mapped different modalities into
joint vector spaces, as in text- or sketch-based im-
age retrieval (Kiros et al., 2016; Sangkloy et al.,
2016; Liu et al., 2017). We adopt (Sangkloy et al.,
2016)’s Siamese network to project sketches and
images into a joint space, and use the projections as
inputs to a basic recurrent neural network for REG.
It is noteworthy that this joint image-sketch space
is designed to capture similarities across modalities,
rather than complementary information expressed
in different modalities. We leave the exploration of
other modes of representation for future work.

3 The Draw-and-Tell Dataset

The Draw-and-Tell dataset (Han and Schlangen,
2017) includes 10,804 photographs of objects (re-
ferred to as target objects below), spread across
125 categories. Each image is paired with around
5 hand-drawn sketches and a description of the
object’s attributes, as shown in Figure 1.

The photos and sketches were selected from
the Sketchy Database1 (Sangkloy et al., 2016).
Han and Schlangen (2017) augmented part of the
Sketchy Database with object attribute descriptions
which were collected from English speakers using
a Crowdsourcing service. In each description task,
workers were presented with 6 photos of objects
from the same category. They were instructed to
describe attributes of the target object, so that an-
other person can distinguish the target object from
distractor objects. Hence, this resembles classical
settings in REG where distractors are controlled
for being similar to the target reference. Attributes
such as shape, color and orientation were sug-
gested as examples to the workers, but they were
also encouraged to list all attributes that they con-
sider useful. Attribute phrases in the descriptions
were typically separated by “,”. As all the distractor
images were in the same category and in separate
images, workers were suggested not to use non-
discriminative words such as category names or
spatial relations in the descriptions.

1http://sketchy.eye.gatech.edu/
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Figure 2: Word frequency in the corpus.

Sets Token No. Vocab size Overlap
Train 85974 4621 -

Validation 4698 1099 962
Test 9948 1601 1370

Table 1: Data statistics. Overlap column shows vo-
cabulary overlaps between the training set and valida-
tion/test sets.

Data Statistics On average, each object descrip-
tion includes 3 attribute phrases. In total, there are
100620 tokens in all the descriptions. The vocab-
ulary size is 4982. 2893 of all the words in the
vocabulary appear less than 3 times, as shown in
Figure 2. We split the dataset into train (9233),
validation (500) and test (1071) sets. Table 1 shows
the token numbers, vocabulary size of each data
split, and vocabulary overlaps with the training set.

Image and Sketch Joint Embedding Space
Along with the Sketchy Database, Sangkloy et al.
(2016) published a Siamese network model that
embeds images and sketches into a joint vector
space. The Siamese network is composed of two
separate networks with the same architecture, the
sketch-net and the image-net. The image-net en-
codes photographs into image feature vectors. Sim-
ilarly, the sketch-net encodes sketch images into
feature vectors. The Siamese network was trained
and optimized to project photo vectors as close as
possible to corresponding sketch vectors, while in
the mean time, as distinguishable as possible from
other photo vectors. In this work, we used the pre-
trained models and took the output vector from the
last fully connected layers as feature vectors (in
1024 dimension) to represent images and sketches.
Next, we describe how we train a natural language
generation model with the extracted vectors.

4 The RNN Caption Generator

Considering the small size of the Draw-and-Tell
dataset, we built a basic Recurrent Neural Network
model for the generation task (Tanti et al., 2017).
The model takes a text vector and a visual fea-
ture vector as inputs, and predicts a sequence of
tokens to describe the target object in the input vi-
sual vector. Therefore, the generated tokens are
conditioned on the input visual feature vector.

The network includes an embedding layer, an
LSTM layer, and a softmax layer. We encode word
tokens as a one-hot vector, and concatenate the
vector with image feature vectors (i.e., injecting
image information into the network). An embed-
ding layer takes the concatenated vector as input.
The size of the LSTM layer is 512. The model was
implemented using Tensorflow2. Training of the
model is performed using the Adam optimizer and
the cross entropy loss function.

When applying the model to generate object de-
scriptions, the model first takes an image vector
as input, then predicts each token conditioned on
the image vector and previously predicted tokens
until an end token EOS is predicted. We used a
beam search method to predict the tokens. The
bandwidth of the beam search algorithm is 3.

Note that in the current set-up, we do not include
context or distractor images to generate discrimina-
tive descriptions, but focus on exploring the modal-
ity aspect in the generation task. See Zarrieß and
Schlangen (2018) for a detailed discussion of the
benefit of context features in image-based REG.

5 Experiments

We conducted ablation experiments by altering the
input visual feature vectors. In the Image Only
setup, we trained a model with (object description,
image feature) pairs as input. This results in train-
ing set of 9233 description-image pairs. In the
Sketch Only setup, we trained a model with (ob-
ject description, sketch feature) pairs, using train-
ing data of the same size as in the Image Only setup.
In the Multimodal setup, we use both (object de-
scription, image feature) and (object description,
sketch feature) pairs to train the RNN. That is, we
doubled the size of the training data. Therefore, the
model does not only learn to generate expressions
conditioned on image features, but also conditioned
on sketch features.

2https://www.tensorflow.org/



top view legs bend thin legs on sand this chicken is back and have a colorful

head in a forest background

Brown and white in color laying on the sand Red and white chicken facing left red comb

Red and yellow in color has green leaves Black and white in color facing left

Central position brown color green grass Black and white in color facing to the left

(a) (b)

white stripes facing right black dot on the back weathered wood many plans with no

spaces facing forward

Black and white in color facing to the right A wooden bench in a park with a park

Black and white in color facing left Light brown wooden bench in front of desk

White and black in color facing left Light brown wood facing left side view

(c) (d)

trunk decorated ears pierced curled trunk brown leaning down face to the right in

long gray grass

brown elephant facing right head down facing right full body shot looking forward

facing right full body shot eating grass black and white in color facing right

gray elephant facing to the right facing right head down looking forward

(e) (f)

Figure 3: Samples of generated descriptions. Grey utterances are attribute annotations from humans; Red utter-
ances are generated using both sketch and image features. Blue utterances are from the sketch feature only model;
Green utterances are from the image feature only model.

During training, the data was randomly shuffled,
with a mini batch size of 50. The maximum epochs
is 100. Words appearing less than 3 times were
removed.

All the models were evaluated with image fea-
tures in the test set as input to resemble the task of
object description from images. Figure 2 shows the
evaluation results.

Metrics We evaluated the generated attribute de-
scriptions with BLEU1 score. We also report vo-
cabulary size, average number of tokens in each
generated object description to show the word ca-
pacity of the models.

Table 2 shows the evaluation results. The Mul-
timodal model achieved a slightly higher BLEU1
score. It also results in a slightly larger vocabulary
of the generated descriptions.

As sketch vectors are expected to encode iconic
information, we analyze color, shape, and orien-
tation words in the generated descriptions in the
Qualitative analysis section below.

5.1 Qualitative Analysis

Figure 3 shows some examples for generated re-
ferring expressions. We observed that, given only
sketch vectors in the training data, the model still

Experiments BLEU1 BLEU2 Vocab. Token
size Number

Sketch only 0.58 0.43 310 8.24
Image only 0.61 0.43 325 8.42
Multimodal 0.64 0.44 331 8.90

Table 2: BLEU scores, vocabulary size and average
length of object descriptions in the experiments.

generates color words, but less accurate than Im-
age Only and Multimodal models. For instance,
in Figure 3 (a), the Sketch Only model describes
a brown starfish as red and yellow. As shown in
Figure 3 (b), the Multimodal model used red comb
to describe the chicken, while the other two models
only used color and orientation words. We conjec-
ture that this could be due to the combination of
sketch and image features in the training set. In
Figure 3 (e) and (f), the descriptions of the Sketch
Only model correctly describe the directions, while
missing other attributes such as color or adding
wrong attributes (e.g., grass).

6 Conclusion & Discussion

We have presented our ongoing work on generat-
ing fine-grained attribute descriptions of objects in



real-life images by grounding in images and hand-
drawn sketches. Given a medium-sized dataset
with many low frequency words, we deployed
sketch vectors from a joint sketch-image embed-
ding space to improve the generation results. We
show that by training a basic recurrent neural net-
work with both sketch and image features, the
model is able to capture more fine-grained attribute
descriptions. Moreover, even when training only
with sketch feature vectors, the model still achieves
a satisfactory performance according to automatic
evaluation with a BLEU.

In future work, we plan to add human evaluation
results to show how humans perceive the generated
descriptions in terms of naturalness and accuracy.
We plan to further explore the multimodal joint
embedding space for fine-grained object descrip-
tion generation tasks such as shape and orientation
description generation.
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